Working with Layers
in a Map Document

Repairing map documents and
automating map production

This video will discuss how to work with map documents as well as how to
work with layers.

Map documents

arcpy provides access to map document files...
— read and edit layer sources. R
— manipulate map layout. - ’

— export map to .pdf, .jpg, etc. | -

Repair broken layers... Automate map-making...

= = Layers = = Layers
@ [} DEM |;'> #® O oem

® [Towns ® O Towns

Arcpy allows a script to access map document files.

This access allows a script to repair broken data layers in the map document

Or use a template to automate the production of a set of maps.

The map document object (mxd)

Provides access to Data Frame, Table of Contents,
and Map Layout. Can export to .pdf, .jpg, etc.

Create map document object with...
mxd = arcpy.mapping.MapDocument (mxdFile)

Save changes...
mxd.save ()

Save a new copy...
nxd.saveACopy (outputMxd)

Delete the object (releases file lock)...
rxd

The map document object provides access to the data frame(s), table of

contents, and the map layout. It also allows maps to be exported as a .jpg or
pdf.

The mapping submodule contains all of arcpy’s capabilities for working with

map documents. To get the map document object, use the MapDocument
method in the mapping module.

The map document object can be saved either with the current name or as a
copy.

To unlock the file., the map document object should be deleted when you are
finished with it.

Updating workspaces

To update workspace path for all layers from a
specific old workspace...

nxd. findAndReplaceWorkspacePaths (
r"Cyxdata™, r"Ds\data™)

=

old workspace

Applies to all layers in map document.

The old and new workspaces must be the same
type (i.e. folder, file geodatabase, etc.)

The workspaces for all layers in the map document’s table of contents can be
changed using the map document object’s findAndReplaceWorkspacePaths
tool. This tool can be useful when the data referenced by layers in the map
document have been relocated.

This tool applies to all layers in a map document. Note that the old and new
workspaces must be the same type.

Updating workspaces in mxd

To update workspaces for all layers of a specific type...

nxd. replaceWorkspaces (

/v r'"C:\data", "SHAPEFI LE WORKSPACE L
r"D:\data.gdb", "FILEGDB WORKSPACE")
old ~ 7
wksp new wksp new wksp type

Applies to all layers in map document.
Old and new workspace can be different types.
Workspace types include...

ACCESS_WORKSPACE SDE_WORKSPACE
CAD_WORKSPACE SHAPEFILE_WORKSPACE
EXCEL_WORKSPACE TEXT_WORKSPACE
FILEGDB_WORKSPACE RASTER_WORKSPACE 5

The map document object’s replaceWorkspaces tool will update the
workspace only for a specific type of layer.

The tool applies to all layers that have the data type associated with the
original workspace. The new workspace can have a different type than the
original workspace.

The types of available workspaces are listed here.

Script example: updating workspaces

arcpy
mxdFile = r“C:\NRE 5585\Weekl11.mxd”

oldWksp =r“C:\NRE 5585\Data”

new Wksp = r“D:\GIS Data”

mxd = arcpy.mapping.MapDocument(mxdFile)
mxd.findAndReplace WorkspacePaths(oldWksp, newWksp)
mxd.save()

mxd

In this slide, we’ll see an example script that demonstrates how to update the
workspaces for all layers in a map document.

Note that an ArcMap map document file has the .mxd extension.

The old workspace is where the data were originally located; the new
workspace is where the data have been moved.

The map document object is created for the associated .mxd file using the
mapping module’s MapDocument method.

The findAndReplaceWorkspacePaths tool is used to update the workspaces
for all layers in the map document.

The map document is saved and the map document object is deleted.

Accessing layers in mxd

Get list of layers in a layer group, dataframe, or TOC

lyrs = arcpy.mapping.ListLayers(mxd, wildcard, dataframe)

mxd or group layer object / _
dataframe object —
restrict layers. * for wildcard restricts layers to
frame
lyrs = arcpy.mapping.ListLayers(mxd) = £ Layers
= [0 TowNs
>>> lyrs O]
aite: Teiti 238 ' S e = O shapes
[<map layer uUTOWNS"™, <map group layer 5 O sgepoit

u‘shapes’, <map layer u‘singlePoint’>] S

7

A list of the layers in the map document’s Table of Contents can be retrieved
using the ListLayers method.

The map document object is the only required parameter.

A wildcard may be specified to restrict the names of the layers that are
returned — the asterisk is used as the wildcard character, as usual.

The dataframe object can also be specified to restrict the returned layers to
those contained in a specific dataframe. We’'ll see in a later video how to
create the dataframe object.

This statement shows an example of retrieving all layers in the table of
contents..

The layers are returned as layer objects in a python list. Note that group layers
(i.e. “shapes”) are also returned.

Layer name and data source
lyr = arcpy.mapping.ListLayers(mxd, “TOWNS")[0]
Read/change TOC name
>>> lyr.name E] 988 d Facs £
" = = Frame 1 = = Frame 1
u‘towns = Mtowns g = B CTTOWNS
>>> lyr.name = “CT TOWNS” C] -
Read dataset name / workspace...
>>> |yr.datasetName >>> lyr.workspacePath
u‘towns’ u‘C:\\NRE 5585’
Read data source...
>>> lyrdatasource Da::::::e: Shapefile Feature Class
u‘C:\NRE_5585\TOWNS.shp’ |[2%f=... et s

This slide will explore some properties of layer objects. The example
statement retrieves the layer object corresponding to the “TOWNS” layer — we
will use this layer object for all examples on the next few slides.

The name property allows a layer’s name in the table of contents to be read or
changed.

The datasetName property provides the basename of the dataset that is
referenced by the layer - note that the extension is not included.

The workspacePath property provides the workspace of the layer’s dataset.

The dataSource property provides the path name for the layer’s dataset. Note
that the datasetName, workspacePath, and dataSource properties are read-
only and so cannot be modified.

Layer type

Is it a feature layer?

>>> lyr = arcpy.mapping.ListLayers(mxd, “towns”)[0] = towns
; a

>>> lyr.isFeaturcLayer
TRUE
Is it a group layer? =/ @ Input Data

_ ; : k_ e + [towns
lyr = arcpy.mapping.ListLayers(mxd, “Input Data”)[0] < I J—-—
>>> lyr.isGroupLayer + & DEM

TRUE

i = @ land
Is it a raster layer? and cover

Class_Name
lyr = arcpy.mapping.ListLayers(mxd, “land cover™)[0] M Developed
>>> |yr.isRasterLayer [Turf Grass
TRUE [Other Grasses

M Agriculture ©

The isFeatureLayer property returns a True value if the layer corresponds to a
feature class; otherwise a False value will be returned.

The isGroupLayer property will return a True value if the layer object is a
group layer.

The isRasterLayer property will return a True value if the layer object
corresponds to a raster.

Layer definition query
Displays only features and rows
that satisfy the SQL expression.
Read/change definition query...

.. no definition que
>>> lyr.definitionQuery auen

u“TOWN = ‘Chaplin’”
>>> |yr.definitionQuery = “TOWN = ‘Mansfield’”

=)

TOWN = “Chaplin’ TOWN = “‘Mansfield’ 10

A layer’s definition query can be used to restrict the features and rows that

are displayed — only features and rows that satisfy the SQL expression will be
displayed in ArcMap.

The definitionQuery property can be read or set a definition query using a
standard SQL expression.

In this example, the definitionQuery is changed from “Town = Chaplin” to
“Town = Mansfield”.

10

Layer display properties

Read/change visibility...

>>> lyr.visible

>>> lyr.visible = FALSE
Read/change transparency...

>>> lyr.transparency
0
>>> lyr.transparency = 50

Turn labels off/on...

>>> lyr.showLabels = False E:>
>>> |yr.showLabels = True

towns

= Wi -
True E " E:> DD

Mansfield

1

The layer object’s visible property can be set to True or False to turn the layer
on or off in ArcMap. In this example, the layer is turned off by setting the visible

property to False.

The transparency property of the layer can be set from 0 to 100 with O being

opaque and 100 being completely transparent.

The showLabels property turns the layer’s labels on (True) or off (False).

11

List label classes

Contain information on how 1

tO |abe| featu res. General | Source | Selection | Display | Symbology | Fields | Defintion Query Labels
™ Label features in this laper

Can use an SQL quefy Method [Define classes of features and label each class diferertly. |

Custom dataset labels -

add. | | _Renome. | soLOuey. | ¢

through label classes.

To get list of label classes... Niota: labiale

>>> |blClasses = lyr.labelClasses CanF)Ot be
>>> |blClasses applied to

raster layers
[<LabelClass object...>]

Cannot create new label classes in python but the “default”

class always exists. -

The label class allows you to customize how feature labels will be displayed - it
is equivalent to accessing the layer properties page in ArcMap.

Use the layer object’s labelClasses property to get a list of label classes that
correspond to the layer.

Note that labels cannot be applied to raster datasets.

Arcpy can only work with existing label classes. Layers always have a “default’
label class that can be accessed through arcpy.

12

Label class properties
Ibl = IblClasses[0]

Read/change class name...

>>> |bl.className = “Class 1”

Read/change class SQL query...
>>> bl.SQLQuery = “COUNTY= ‘Tolland’”

Show/hide class labels... Note: for class labels to

display, the class label's
>>> |bl.showClassLabels = True ShfwéassLabe,S and the

>>> [bl.showClassLabels = False aver's showLabels (slide 11)
property must be set to True

13

The name of a label class can be read or changed by accessing the
className property.

The SQLQuery property allows an expression to be used to apply label class
properties only to features that satisfy the expression.

The showClassLabels property must be True in order for labels to be
displayed for the label class.

Note that the layer’'s showLabels property must also be True for labels to be
displayed.

13

Label class field name

Text Sting

Label Field: TOWN v

Read/modify label class field...

>>> |bl.expression =ﬁTOWN i

square brackets
encloses field name

Arcpy’s control over label classes is limited...
cannot create new classes.
cannot modify font or placement of labels.

The field that will be used to display labels is set using the expression
property of the label. In this example, the values from the “TOWN?” field will be
used for the labels.

Note that the field name should be enclosed in square brackets.

Arcpy is limited in what it can do with labels. It cannot create new label classes
and it cannot modify font or label placement settings.

14

Example script: labels

mxd = arcpy.mapping.MapDocument(mxdFile)
lyr = arcpy.mapping. ListLayers(mxd, “LWDS”)[0]

clss = lyr.labelClasses[0] <—— get label class

—

clss.className = “Class 1"

clss.SQLQuery = “COUNTY= ‘Tolland" - label class

clss.expression = “[TOWN]” properties

clss.showClassLabels = True ,\ _

show class labels

lyr.showLabels = True
‘\ when layer labels on

mixd.save() show layer

mxd labels
15

In this slide, we'll see an example of a script that works with labels. The first
statement gets the map document object.

The mapping module’s ListLayers method is used to get a list of layers with the name
“‘LWDS”. The layer object is extracted from the list.

The layer object’s labelClasses method is used to get a list of label classes for the
layer. The label class is extracted from the list.

The label classes’ className property is used to set the name of the label class to
“Class 1”.

The label classes’ SQLQuery property is used to set an expression so that labels will
only be displayed for features that satisfy the expression.

The label classes’ expression property was used to set the label field name to
“TOWN?”. Values from this field will be used for the labels.

The label classes’ showClassLabels property must be set to True in order for labels
to be displayed.

The layer's showLabels property must also be set to True in order to display labels.

The mxd object is saved and the object is deleted to unlock the file.

15

Layer extent

Get extent object for entire layer...

‘:1."\1-"*

lyrExtent = lyr.getExtent()

- - — - ——

Get extent of selected features...

lyrExtent = lyr.getSelectedExtent()

Can use layer extent to set dataframe extent...

dF.extent = lyrExtent

™~ dataframe obj (see next lecture video) ”

The layer’s getExtent method will get an extent object that corresponds to the
entire layer.

The layer’s getSelectedExtent method will get the extent object that
corresponds to any selected features in the layer.

The extent object can be used to set the extent of the dataFrame. We'll
discuss how to access the dataFrame in the next lecture video.

Updating layer data sources

To change the workspace for a single layer...

lyr. findAndReplaceWorkspacePath (

r"C:\temp\data", r"C:\Python workshop\data")
/ N
original workspace new workspace

To change data source for a single layer...
new workspace e

lyr.replaceDataSource (r"C: \Python workshop\ 11*3”,
/“' SHA ”YFILF WORKS PAC CEY, "towns"™)
new workspace type e il natma /’

(do not include extension) -

The workspace for a layer can be updated by using the layer object’s
findAndReplaceWorkspacePath method.

The data source can be changed for a layer by using the layer object’s
replaceDataSource method. Note that the extension should not be included in
the basename of the new dataset.

|dentifying broken data sources

= == Layers

3 [} LAKE Missing
[} middlesexsoils 1. LAKE
[} towns ':> 5. Soils
[watersheds 5. TOWWS
+ dem.img 7

+ land_cover.img

+ urban g

To get a list of layers with invalid data sources...

brokenLst= arcpy.mapping.ListBrokenDataSources(mxd)

>>> brokenLst

[<map layer u“'LAKE’>, [<map layer u‘middlesexsoils’>, [<map layer u‘Towns’>]

18

A list of “broken” data sources can be retrieved for a map document object by
using the ListBrokenDataSources method of the mapping module. This

method returns a list of layer objects for which the source dataset cannot be
found.

Add layer

New layers can be added to a data frame...
from a different dataframe or map document...

new lyr = arcpy.mapping.ListLayers(mxd2, “Towns”)[0]
from a .lyr file saved on disk
lyrFile = r*“C:\Class_data\towns.lyr”
new_lyr = arcpy.mapping.Layer(lyrFile)
Add layer to data frame...
arcpy.mapping.AddLayer (dF, new lyr, “AUTO_ARRANGE")

data frame object - / position in frame.
layer object other options:
“‘BOTTOM”, “TOP” 19

New layers can be added to a data frame. The layer object, for the new layer
can be obtained from a different data frame or a different map document.

The layer object may also be created from a .lyr file that has been saved on
disk. The mapping module’s Layer method can be used to get a layer object
for a saved layer file,

The mapping module’s AddLayer method will add the layer object to the
specified data frame. The general position of the layer in the data frame can
be specified.

19

Insert and remove layer

Allows precise control of new layer position in data
frame. new layer
object
Insert layer before/after a reference layer... /
arcpy.mapping.InsertLayer (dF, ref lyr, new_lyr,

data frame object—//_/ “BEFORE”)
\

reference layer (already in frame) . «AFTER”
Remove layer from data frame...

arcpy.mapping.RemoveLayer (dF, remove lyr)

layer objectto A

remove from frame 20

The InsertLayer method allows precise control over the position of the new
layer in the data frame. The position is specified relative to a reference layer
that already exists in the data frame. The reference layer is specified in the
form of a layer object.

A layer can be removed from the data frame using the RemoveLayer method.

20

Update layer symbology / replace layer

Apply source _lyr symbology to updated lyr ...
mxd.UpdateLayer (dF, updated lyr, source lyr, “TRUE”)

— updated_lyr and source_lyr must have similar
geometry type and attribute definitions

Completely replace updated_lyr with source lyr...
mxd.UpdateLayer (dF, updated lyr, source lyr, “FALSE”)
— Same as removing updated_lyr and adding

source_lyr in its place (i.e. changes layer

data source) %

The UpdateLayer method allows the symbology of one layer to be applied to
the another layer. The updated_lyr and the source_lyr are both specified as
layer objects and must have the same geometry type and attributes. The
“TRUE” value in the statement indicates that the updated_lyr’s data source will
not be affected.

When a “FALSE” value is used with the UpdateLayer tool, the updated_lyr’s
data source and symbology will be replaced by the source_lyr. This is
equivalent to removing the updated_lyr and adding the source_lyr in its place.

21

Layer objects and ArcTools

Layer objects are treated as layers in ArcTool
statements...

— can be use as inputs to any tool requiring a feature
class or feature layer...

including Select Layer By Attribute and Select Layer
by Location tools...

lyr = arcpy.mapping.ListLayers(mxd, “towns”)[0]

arcpy.SelectLayerByAttribute(lyr, “, “TOWN = ‘Somers

9’9)

22

Layer objects can be used as inputs to any ArcTool that accepts a layer as an

input — this includes the Select Layer By Attribute and Select Layer By

Location tools which only accept layer inputs.

This example shows a layer object being used as an input to the
SelectLayerByAttribute tool.

22

